Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Soc Rev ; 53(4): 1730-1768, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38287893

RESUMEN

This review reports the recent progress on ATR-far ultraviolet (FUV) spectroscopy in the condensed phase. ATR-FUV spectroscopy for liquids and solids enables one to explore various topics in physical chemistry, analytical chemistry, nanoscience and technology, materials science, electrochemistry, and organic chemistry. In this review, we put particular emphasis on the three major topics: (1) studies on electronic transitions and structures of various molecules, which one cannot investigate via ordinary UV spectroscopy. The combined use of ATR-FUV spectroscopy and quantum chemical calculations allows for the investigation of various electronic transitions, including σ, n-Rydberg transitions. ATR-FUV spectroscopy may open a new avenue for σ-chemistry. (2) ATR-FUV spectroscopy enables one to measure the first electronic transition of water at approximately 160 nm without peak saturation. Using this band, one can study the electronic structure of water, aqueous solutions, and adsorbed water. (3) ATR-FUV spectroscopy has its own advantages of the ATR method as a surface analysis method. ATR-FUV spectroscopy is a powerful technique for exploring a variety of top surface phenomena (∼50 nm) in adsorbed water, polymers, graphene, organic materials, ionic liquids, and so on. This review briefly describes the principles, characteristics, and instrumentation of ATR-FUV spectroscopy. Next, a detailed description about quantum chemical calculation methods for FUV and UV regions is given. The recent application of ATR-FUV-UV spectroscopy studies on electronic transitions from σ orbitals in various saturated molecules is introduced first, followed by a discussion on the applications of ATR-FUV spectroscopy to studies on water, aqueous solutions, and adsorbed water. Applications of ATR-FUV spectroscopy in the analysis of other materials such as polymers, ionic liquids, inorganic semiconductors, graphene, and carbon nanocomposites are elucidated. In addition, ATR-FUV-UV-vis spectroscopy focusing on electrochemical interfaces is outlined. Finally, FUV-UV-surface plasmon resonance studies are discussed.

2.
Langmuir ; 39(19): 6846-6854, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37130319

RESUMEN

To investigate the microscopic electrochemical dynamics of a stable trioxotriangulene (TOT) organic neutral π-radical on a graphite electrode surface, voltammetric and in situ infrared (IR) spectroelectrochemical studies were conducted using electrolyte solutions containing TOT monoanions. Upright columnar crystals (face-on alignment) of the TOT neutral radical were preferentially formed and dissolved in a rather reversible manner in the electrolyte with a low concentration of TOT monoanion under electrochemical conditions; however, more flat-lying columnar crystals (edge-on alignment) were formed in a higher concentration electrolyte. The flat-lying crystals remained on the graphite surface even at a fully reduced potential, owing to the lack of direct π-π interactions between the molecules and the graphite electrode. In situ IR attenuated total reflectance spectroscopy analyses successfully characterized the alignment of the columnar crystals of the TOT neutral radicals and their electrochemical behaviors, including the possible origins of the irreversible redox reaction of TOT on the graphite electrode.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 273: 121040, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35228085

RESUMEN

Recently, ionic liquids (ILs) have attracted attention as prospective electrolytes for Li-ion batteries, with safe performance. Herein, the dynamics of the IL at the electrochemical interface, which is the key to the electrochemical reaction, was monitored using attenuated total reflectance far- and deep-ultraviolet (ATR-FUV-DUV) spectroscopy. An original measurement system, which combined an ATR-FUV-DUV spectrometer with a Kretschmann type (fully metal-coated prism) electrochemical setup, was assembled. Spectral measurements and assignments were performed for the 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIM][TFSI])/Pt electrode (∼7 nm) interface. The incident light in the FUV and DUV regions entered a measurement system comprising an [EMIM][TFSI]/Pt electrode/ATR sapphire prism, and the potential-dependent absorption spectra were measured in the 180-450 nm range. This in-situ spectroscopic technique is unique in that the electronic transition spectra of the interfacial IL can be obtained. By switching the applied potentials, temporal spectral changes (i.e. relaxation signals) were tracked at wavelengths of 450 nm and 221 nm, where the direct electronic absorption of the IL was active and inactive, respectively. Comparing these relaxation times, it was revealed that the absorption signal at 221 nm changed more slowly than that at 450 nm. This indicated that the molecular conformations that affected the electronic absorption of the interfacial ILs changed slowly. Considering the surface-normal dipole selection rule for molecules on a metal surface, it is suggested that the slow changes in the molecular conformations can be ascribed to the potential-dependent interfacial orientations of [EMIM]+.

4.
Phys Chem Chem Phys ; 24(2): 615-623, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34853835

RESUMEN

The solid-liquid interface forms an electric double layer that enables the function of electronic devices and, thus, represents an important area of electrochemical research. Because ionic liquids (ILs) are becoming prominent candidates for new high-performing electrolytes, their interface with solid substrates (e.g., metal electrodes or organic semiconductors) attracts substantial attention. An example of improvement achieved using ILs as electrolytes is a decrease in the operating voltage of transistors from >10 V in traditional SiO2-gated transistors to <1 V in IL-gated electronic double-layer organic field-effect devices. This perspective discusses the investigation of poorly accessible IL/substrate interfaces using both attenuated total reflectance ultraviolet (ATR-UV) spectroscopy and a newly developed electrochemical setup combined with ATR-UV (EC-ATR-UV), which allows analysis of the interfacial area under the application of varying electric potential. The recent EC-ATR-UV applications in interfacial analytical chemistry are overviewed and compared to other spectroscopic methods described in the recent literature. Lastly, the supplementation of experimental data with theoretical calculations (e.g., quantum chemical calculations and molecular dynamics simulations) is also addressed.

5.
Chem Soc Rev ; 50(19): 10917-10954, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34382961

RESUMEN

The purpose of this review is to demonstrate advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Molecular spectroscopy, particularly vibrational spectroscopy and electronic spectroscopy, has been used extensively for a wide range of areas of chemical sciences and materials science as well as nano- and biosciences because it provides valuable information about structure, functions, and reactions of molecules. In the meantime, quantum chemical approaches play crucial roles in the spectral analysis. They also yield important knowledge about molecular and electronic structures as well as electronic transitions. The combination of spectroscopic approaches and quantum chemical calculations is a powerful tool for science, in general. Thus, our article, which treats various spectroscopy and quantum chemical approaches, should have strong implications in the wider scientific community. This review covers a wide area of molecular spectroscopy from far-ultraviolet (FUV, 120-200 nm) to far-infrared (FIR, 400-10 cm-1)/terahertz and Raman spectroscopy. As quantum chemical approaches, we introduce several anharmonic approaches such as vibrational self-consistent field (VSCF) and the combination of periodic harmonic calculations with anharmonic corrections based on finite models, grid-based techniques like the Numerov approach, the Cartesian coordinate tensor transfer (CCT) method, Symmetry-Adapted Cluster Configuration-Interaction (SAC-CI), and the ZINDO (Semi-empirical calculations at Zerner's Intermediate Neglect of Differential Overlap). One can use anharmonic approaches and grid-based approaches for both infrared (IR) and near-infrared (NIR) spectroscopy, while CCT methods are employed for Raman, Raman optical activity (ROA), FIR/terahertz and low-frequency Raman spectroscopy. Therefore, this review overviews cross relations between molecular spectroscopy and quantum chemical approaches, and provides various kinds of close-reality advanced spectral simulation for condensed phases.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 253: 119549, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33621936

RESUMEN

Far-ultraviolet (FUV) spectroscopy in the region of 140-200 nm of condensed-phase has received keen interest as a new electronic spectroscopy. The introduction of the attenuated total reflection (ATR) technique to the FUV region has opened a new avenue for FUV spectroscopy of liquids and solids. ATR-FUV spectroscopy enables the study of electronic structures and transitions of most types of molecules. It also holds great promise for a variety of applications, i.e., from the application to basic sciences to practical applications. In this review, the characteristics and advantages of ATR-FUV spectroscopy in the condensed phase are described first; then, a brief historical overview is provided. Next, the ATR-FUV spectroscopy instrumentation is outlined. After these introductory parts, a variety of AFT-FUV spectroscopy applications are introduced, starting from applications to investigations of electronic structure and transitions of alkanes, graphenes, and polymers. Then, time-resolved ATR-FUV spectroscopy is discussed. The applications to materials research, such as the research on inorganic semiconductors and ionic liquids, follow. In the last part, the FUV spectroscopy perspective is emphasized.

7.
Commun Chem ; 4(1): 88, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-36697533

RESUMEN

The interface of organic semiconductor films is of particular importance with respect to various electrochemical devices such as transistors and solar cells. In this study, we developed a new spectroscopic system, namely electrochemical attenuated total reflectance ultraviolet (EC-ATR-UV) spectroscopy, which can access the interfacial area. Ionic liquid-gated organic field-effect transistors (IL-gated OFETs) were successfully fabricated on the ATR prism. Spectral changes of the organic semiconductor were then investigated in relation to the gate voltage application and IL species, and the magnitude of spectral changes was found to correlate positively with the drain current. Additionally, the Stark shifts of not only the organic semiconductor, but also of the IL on the organic semiconductor films were detected. This new method can be applied to other electrochemical devices such as organic thin film solar cells, in which the interfacial region is crucial to their functioning.

8.
Phys Chem Chem Phys ; 22(38): 21768-21775, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-32960190

RESUMEN

The electronic states of N-butyl-N-methylpyrrolidinium dicyanamide ([BMP][DCA]), a solvated ionic liquid, around Li+ were investigated using attenuated total reflectance far-ultraviolet and deep-ultraviolet (ATR-FUV-DUV) spectroscopy. The absorption bands ascribed to the [DCA]- were blue-shifted as the Li+ concentration increased, and the origin of the shift was explained by the energetic destabilization of the final (excited) molecular orbital using time-dependent density functional theory (TD-DFT) calculations. Using the multivariate curve resolution-alternating least squares (MCR-ALS) algorithm, the obtained spectra were decomposed into two types of [DCA]- at electronic state level, which were categorised as pure [BMP][DCA] and [DCA]- affected by Li+. Our results revealed that the number of [DCA]- with electronic states affected by a Li+, which was termed the electronic coordination number, was ∼5. This value was different from the coordination number within the first solvation layer, which was ∼4. Combining the TD-DFT with molecular dynamics simulations, we demonstrated that one [DCA]- outside the first solvation layer had a different electronic state from that of pure [BMP][DCA]. This is the first successful study that combines ATR-FUV-DUV spectroscopy with MCR-ALS calculations to build a solvation model that describes the electronic states.

9.
Sci Rep ; 10(1): 9938, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32555405

RESUMEN

In this study, surface plasmon resonance (SPR) wavelength shifts due to molecular electronic absorptions in the far-ultraviolet (FUV, < 200 nm) and deep-ultraviolet (DUV, < 300 nm) regions were investigated by attenuated total reflectance (ATR) spectroscopy. Due to the strong absorption in the DUV region, N,N-dimethylformamide (DMF) significantly increased the SPR wavelength shift of Al film. On the other hand, no such shift enhancement was observed in the visible region for Au film because DMF does not have absorbance compared to non-absorbing materials such as water and alcohols. The enhanced SPR wavelength shift, caused by the overlap between SPR and molecular resonance wavelengths in FUV-DUV region, is expected to result in high sensitivity for resonant materials.

10.
Anal Chem ; 92(13): 8654-8659, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32525300

RESUMEN

Aluminum has recently attracted considerable interest as a plasmonic material due to its unique optical properties, but most work has been limited to nanostructures. We report here SPR biosensing with aluminum thin-films using the standard Kretschmann configuration that has previously been dominated by gold films. Electron-beam physical vapor deposition (EBPVD)-prepared Al films oxidize in air to form a nanofilm of Al2O3, yielding robust stability for sensing applications in buffered solutions. FDTD simulations revealed a sharp plasmonic dip in the visible range that enables measurement of both angular shift and reflection intensity change at a fixed angle. Bulk and surface tests indicated that Al films exhibited superb sensitivity performance in both categories. Compared to Au, the Al/Al2O3 layer showed a marked effect of suppressing nonspecific binding from proteins in human serum. Further characterization indicated that Al film demonstrated a higher sensitivity and a wider working range than Au films when used for SPR imaging analysis. Combined with its economic and manufacturing benefits, the Al thin-film has the potential to become a highly advantageous plasmonic substrate to meet a wide range of biosensing needs in SPR configurations.


Asunto(s)
Aluminio/química , Técnicas Biosensibles/métodos , Óxido de Aluminio/química , Animales , Biotina/química , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Bovinos , Oro/química , Humanos , Nanoestructuras/química , Refractometría , Albúmina Sérica Bovina/química , Estreptavidina/análisis , Resonancia por Plasmón de Superficie/métodos
11.
Phys Chem Chem Phys ; 22(3): 1767-1773, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31899463

RESUMEN

Focusing on the electric double layer formed at aqueous solution/graphite electrode interfaces, we investigated the relationship between the mobility of interfacial water and its hydrogen bonding networks by using molecular dynamics simulations. We focused on the mobility of the first hydration layer constructed nearest to the electrode. The mobility was determined by calculating the diffusion coefficient which showed an opposite trend to that of the applied potential polarity. The mobility decreased upon positive potentials while showing an increase upon negative potentials, which is rationalized by the strength of the interfacial hydrogen bonding networks.

12.
Anal Chem ; 91(5): 3436-3442, 2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30724080

RESUMEN

Recently, ionic liquids at the electrode/ionic liquid interface have been intensively studied because they are promising as novel alternatives to traditional electrolyte solutions that are both safe and functional. In this study, we constructed an attenuated total-reflectance spectroscopic system that operates under electrochemical conditions in order to investigate the electronic states of ionic liquids near the electrode surface. Upon application of voltage to an ionic liquid consisting of imidazolium cations and iodide anions, electronic transition spectra in the 150-450 nm range varied. In particular, absorbance due to charge transfer from the anion to the cation drastically increased at positive potentials. The extent of spectral change and contact area between the electrode and the ionic liquid were positively correlated, and thus spectral variations reflected the behavior of the interfacial ionic liquid on the electrode. In addition to potential dependence, time dependence and hysteresis were also investigated. The newly developed system can be applied not only for ionic liquids but foreseeably also for various electrochemical materials such as organic semiconductors.

13.
Chem Rec ; 19(7): 1210-1219, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30256528

RESUMEN

Plasmonics in the UV region has been widely focused because of the higher energy and the abundant electronic resonances compared to the conventional visible plasmonics. Recently, we have investigated the surface plasmon resonance (SPR) properties of the Al film, aiming for the application as refractive index sensors. Utilizing the UV lights, we expect three advantages: high sensitivity, material selectivity, and surface selectivity. By using an original attenuated total reflectance spectroscopic instrument, Al-SPR angle and wavelength were investigated with changing environments on the Al film. Al film thickness and materials of prisms on which Al was evaporated were also important factors for the SPR properties. By optimizing the conditions, the Al film worked as a sensor both in air and in liquids. In addition, our established system expands the plasmonics into an even higher energy region than 200 nm, while the UV-plasmonics have been studied in the wavelength region longer than 200 nm.

14.
Analyst ; 143(11): 2539-2545, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29770820

RESUMEN

Despite providing rich information on electronic states, the far-ultraviolet (FUV, <200 nm) and deep-ultraviolet (DUV, <300 nm) absorption spectra of ionic liquids (ILs) are difficult to obtain without saturation due to very strong analyte absorbance. Herein, FUV-DUV spectra of selected ILs were systematically and easily recorded using an attenuated total reflectance spectrometer and rationalized based on quantum chemical calculations. ILs containing pyrrolidinium or ammonium cations and fluorine-containing anions exhibited weak absorbance below 200 nm that could not be measured by conventional UV-Vis spectroscopy, whereas the corresponding imidazolium-based ILs showed distinct absorption bands that could be reproduced by single-cation-model calculations. On the other hand, imidazolium-based ILs with halide anions showed characteristic charge transfer (CT)-related absorbances. Thus, the above spectroscopic investigations contribute to a fundamental understanding of the electronic processes (e.g., intramolecular excitations and CT transitions) and molecular designs used in electrochemical devices.

15.
Phys Chem Chem Phys ; 20(13): 8859-8873, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29542745

RESUMEN

We investigated the surface (<50 nm) of poly(3-hydroxybutyrate) (PHB) and its nanocomposite with graphene by attenuated total reflection far- and deep-ultraviolet (ATR-FUV-DUV; 145-300 nm; 8.55-4.13 eV) spectroscopy and quantum mechanical calculations. The major absorption of polymers occurs in FUV and is related to Rydberg transitions. ATR-FUV-DUV spectroscopy allows for direct measurements of these transitions in the solid phase. Using ATR-FUV-DUV spectroscopy, periodic density functional theory (DFT) and time-dependent DFT (TD-DFT), we explained the origins of the FUV-DUV absorption of PHB and provided insights into structural changes of PHB which occur upon formation of a graphene nanocomposite and upon heating of the pure polymer. The structural changes cause specific and gradual spectral variations in FUV-DUV. We systematically studied the relaxation of the polymer helix and concluded that the common feature of all models of the unfolded helix lies in a specific and consistent FUV-DUV spectral signature. Relaxed structures feature a blue-shift of the major FUV transition (non-bonding molecular orbital to Rydberg 3p and π to π*) as compared with crystalline PHB. The FUV absorption of the relaxed structures was determined to be significantly stronger than that of the crystalline state. These results are consistent with the observed temperature-dependent spectra of the pure PHB. The simulation of the thermal expansion of the crystalline polymer by a periodic-DFT study allows us to exclude the possibility that spectral variations observed experimentally are influenced by changes in the crystalline phase. We concluded that the crystallinity of PHB at the sample surface increases with an increase in graphene content in the nanocomposite. However, it is unlikely that the polymer structure inside the crystal is affected; instead the FUV-DUV spectral variations result from changes in the polymer morphology that occur at the sample surface. The phase transition of PHB is affected by temperature and addition of graphene content. These changes are likely to be the opposite of those occurring in the bulk sample.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 197: 103-106, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29133130

RESUMEN

Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤200nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

17.
Sci Rep ; 7(1): 5934, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28725007

RESUMEN

Surface plasmon resonance (SPR) sensors detect refractive index changes on metal thin films and are frequently used in aqueous solutions as bio- and chemical-sensors. Recently, we proposed new SPR sensors using aluminum (Al) thin films that work in the far- and deep-ultraviolet (FUV-DUV, 120-300 nm) regions and investigated SPR properties by an attenuated total reflectance (ATR) based spectrometer. The FUV-DUV-SPR sensors are expected to have three advantages compared to visible-SPR sensors: higher sensitivity, material selectivity, and surface specificity. However, in this study, it was revealed that the Al thin film on a quartz prism cannot be used as the FUV-DUV-SPR sensor in water solutions. This is because its SPR wavelength shifts to the visible region owing to the presence of water. On the other hand, the SPR wavelength of the Al thin film on the sapphire prism remained in the DUV region even in water. In addition, the SPR wavelength shifted to longer wavelengths with increasing refractive index on the Al thin film. These results mean that the Al thin film on the sapphire prism can be used as the FUV-DUV-SPR sensor in solutions, which may lead to the development of novel and sophisticated SPR sensors.

18.
J Phys Chem Lett ; 7(21): 4363-4368, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27767323

RESUMEN

Plasmon-induced charge separation (PICS) at the interface between a plasmonic nanoparticle and semiconductor is now widely used for photovoltaics and photocatalysis. Here we take advantage of PICS for site-selective nanoetching of silver nanocubes on TiO2 beyond the diffraction limit. A silver nanocube exhibits two resonance modes localized at the top and bottom of the nanocube (distal and proximal modes, respectively) when it is placed on TiO2. We achieved selective etching at the top and the bottom of the nanocubes by PICS based on the distal and proximal modes, respectively. The site-selective nanophotonic etching reveals that the anodic reaction involved in PICS is induced by the plasmonic near field, which causes an external photoelectric effect. In particular, the distal mode etching at the top edges is explained in terms of ejection of energetic electrons (or hot electrons) from the distal site to TiO2 across the nanocube.

19.
Opt Express ; 24(19): 21886-96, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661924

RESUMEN

The surface plasmon resonance (SPR) of Al thin films was investigated by varying the refractive index of the environment near the films in the far-ultraviolet (FUV, 120-200 nm) and deep-ultraviolet (DUV, 200-300 nm) regions. An original FUV-DUV spectrometer that adopts an attenuated total reflectance (ATR) system was used. The measurable wavelength range was down to the 180 nm, and the environment near the Al surface could be controlled. The resultant spectra enabled the dispersion relationship of Al-SPR in the FUV and DUV regions to be obtained. In the presence of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) on the Al film, the angle and wavelength of the SPR became larger and longer, respectively, compared to those in air. These shifts correspond well with the results of simulations performed using Fresnel equations.

20.
Phys Chem Chem Phys ; 18(32): 22526-30, 2016 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-27471106

RESUMEN

Electronic absorption spectra of imidazolium-based ionic liquids were studied by far- and deep-ultraviolet spectroscopy and quantum chemical calculations. The absorption spectra in the 145-300 nm region of imidazolium-based ionic liquids, [Cnmim](+)[BF4](-) (n = 2, 4, 8) and [C4mim](+)[PF6](-), were recorded using our original attenuated total reflectance (ATR) system spectrometer. The obtained spectra had two definitive peaks at ∼160 and ∼210 nm. Depending on the number of carbon atoms in the alkyl side chain, the peak wavelength around 160 nm changed, while that around 210 nm remained at almost the same wavelength. Quantum chemical calculation results based on the time-dependent density functional theory (TD-DFT) also showed the corresponding peak shifts. In contrast, there was almost no significant difference between [C4mim](+)[BF4](-) and [C4mim](+)[PF6](-), which corresponded with our calculations. Therefore, it can be concluded that the absorption spectra in the 145-300 nm region are mainly determined by the cations when fluorine-containing anions are adopted. In addition, upon addition of organic solvent (acetonitrile) to [C4mim](+)[BF4](-), small peak shifts to the longer wavelength were revealed for both peaks at ∼160 and ∼210 nm. The peak shift in the deep-ultraviolet region (≤200 nm) in the presence of the solvent, which indicates the change of electronic states of the ionic liquid, was experimentally observed for the first time by using the ATR spectrometer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...